Cerapedics Print Logo

In-Vitro Studies (Papers)

  1. Evidence of osteocalcin expression in osteoblast cells of mandibular origin growing on biomaterials with RT-PCR and SDS-PAGE/Western blotting. Turhani, D., Item, C., Thurnher, D., Kapral, D., Cvikl, B., Weissenbock, M., Yerit, K., Erovic, B., Moser, D., Watzinger, F., et al. Mund Kiefer Gesichtschir 7, (2003) 294-300. (Published in German).
  2. In-vitro study of adherent mandibular osteoblast-like cells on carrier materials. Turhani D, Weissenbrock M, Watzinger E, Yerit K, Cvikl B, Ewers R, Thurnher D. Int J Oral Maxillofac Surg, 2005; July 34(5): 543-50.
  3. A study of biologically active peptide sequences (P-15) on the surface of an ABM scaffold (PepGen P-15) using AFM and FTIR. Hole BB, Schwarz JA, Gilbert JL, Atkinson BL.  J Biomed Mater Res A, 2005, Sep 15; 74(4): 712-21.
  4. Growth and proliferation of human osteoblasts on different bone graft substitutes: an in-vitro study.  Kübler A, Neugebauer J, Oh JH, Scheer M, Zöller JE.  Implant Dentistry. 2004 June : 13(2) :171-9
  5. Comparison of cell viability on anorganic bone matrix with and without P-15 cell-binding peptide.  Hanks T, Atkinson BL.  Biomaterials, 2004; 25(19):4831-4836.
  6. Increased Tgf-β1 production by rat osteoblasts in the presence of PepGen P-15 in-vitro. Trasatti C, Spears R, Gutmann JL, Opperman LA.  Journal of Endodontics, 2004 Apr; 30(4):213-7.
  7. Biomimetic collagen scaffolds for human bone cell growth and differentiation.  Yang XB, Bhatnagar RS, Li S, Oreffo ROC.   Tissue Engineering, 2004 Vol 10, 7/8: 1148-59
  8. P-15 cell-binding domain derived from collagen:  analysis of MG63 osteoblastic-cell response by means of microarray technology.  Carinci F, Pezzetti F, Volinia S, Laino G, et al.  Journal of Periodontology, 2004: 75(1); 60-77.
  9. Enhanced cell attachment and osteoblastic activity by P-15 containing matrix in hydrogels. Nguyen H, Qian JJ, Bhatnagar RS, Li S. Biochemical and Biophysical Research Communications 311, 2003; 179-186.
  10. Effects of bone morphogenetic protein-7 stimulation on osteoblasts cultured on different biomaterials.  Acil Y, Springer IN, Broek V, Terheyden H, Jepsen S.  J Cell BioChem. 2002; 86(1):90-8
  11. The putative collagen binding peptide hastens periodontal ligament cell attachment to bone replacement graft materials. Lallier T, Yukna R, et al.  Journal of Periodontology 2001; 72:990-997.
  12. Design of biomimetic habitats for tissue engineering with P-15, a synthetic peptide analogue of collagen.  Bhatnagar RS, Qian JJ, Wedrychowska A, et al., Tissue Engineering, 1999; 5:53-65.
  13. Biomimetic habitats for cells: ordered matrix deposition and differentiation in gingival fibroblasts cultured on hydroxyapatite coated with a collagen analogue.  Bhatnagar RS, Qian JJ, Wedrychowska A, et al. Cells and Materials 1999; 9:93-104.
  14. Construction of biomimetic environments with a synthetic peptide analogue of collagen.  Bhatnagar RS, Qian JJ, Wedrychowska A, Smith N.  Materials Research Society Symposium Proceedings, Volume 530, 1998.
  15. The role in cell-binding of a ß-bend within the triple helical region in collagen Α1(I) chain: Structural and biological evidence for conformational tautomerism on fiber surface.   Bhatnagar RS, Qian JJ, Gough CA.  Journal of Biomolecular Structure & Dynamics, 1997;14: 547-60.
  16. Enhanced cell attachment to anorganic bone mineral in the presence of a synthetic peptide related to collagen.  Qian JJ, Bhatnagar RS, Qian JJ.  Journal of Biomedical Materials Research, 1996;31:545-54.
  17. Mechanism of cell growth on calcium phosphate particles: role of cell-mediated dissolution of calcium phosphate matrix. Cheung HS, Tofe, AJ. S.T.P. Pharma Sciences 3 (1)51-55, 1993.